icon

img
新闻活动 新闻活动
/
/
美国宾夕法尼亚州立大学:使用Geomagic Design X,Control X 和 3DXpert 辅助增材制造教学
img

美国宾夕法尼亚州立大学:使用Geomagic Design X,Control X 和 3DXpert 辅助增材制造教学

  • date   发布时间:2023/06/15
  • 访问量:

【概要描述】 宾夕法尼亚州立大学 Geomagic 合作,通过动手实践增加学生从设计到后期处理的增材制造经验。

美国宾夕法尼亚州立大学教学需求



宾夕法尼亚州立大学是从事增材制造研究和教育的高等院校之一,提供很有特色的增材制造与设计工程硕士(MEng AMD)项目。该项目的特色之一是它不仅招收全日制学生,还招收在职工程师,后者用过宾夕法尼亚州立大学世界校区(网络虚拟校区)在线完成学习。



为帮助学生成为技术专家将其所学的增材制造知识用于实践,该项目将多学科理论知识与亲身实践相结合,学生们可在宾夕法尼亚州立大学增材制造车间获得实践经验。

 

所有学生都必须接受实验室课程,学习从设计到后期处理的整个增材制造工作流程,获得相关经验,而且参加该项目的大多数学生都在为行业领先的打算进军增材制造领域的企业工作。




“为实验室课程选择合适的教学道具真的挺难的,” Timothy W. Simpson教授说道,他是增材制造与设计硕士项目主任兼创新金属加工-直接数字化沉积中心(CIMP-3D)的联合主任。“一方面,我们希望学生能够体验到他们将来工作会用到的最专业的软件工具,获得良好的实际动手经验。另一方面,这些软件工具必须非常容易学习和使用,因为学生在学校呆的时间很有限,” Simpson 补充道。

“我们发现3DXpert教学版、Geomagic Design X 和Geomagic Control X 软件是相当合适的教学软件,它能够教会学生如何通过三维扫描创建模型,准备和优化用于打印的3D CAD模型,并检测成品质量,课程老师和学生都对他们的功能和易用性印象深刻。”

 






 






增材制造实践:从概念到工作模型






 






 

我们的实验室课程项目之一是打印一个用金属制成的斯特林发动机,采用增材制造提高现有的功能装配模拟真实世界的发动机功能。由于时间限制,学生们扫描了一些运行中的斯特林发动机模型,使用Geomagic Design X 逆向工程软件技术作为其学习起点而非从头开始。然后创建一个参数化的、基于特征的、可编辑的实体模型,并将其导入到CAD系统中。

 

通过的标准是观察学生是否能够获得一个能够正常运行的模型,其转速RPM(每分钟速率)等参数能够比得上原始模型甚至更为优越,同时还要整合增材制造的优势,比如零部件更为牢固,重量更轻等。学生必须使用不同速度和等级的激光来进行后期处理,对不同体积的网格结构进行金属增材制造设计和生产。

 






 






宾夕法尼亚州立大学

增材制造实验室实践课程概要






 






学生Joseph Fisher、Ryan Henderson、Adnen Mezghani、Nicholas Nace和Nate Watson完成了该项目的下述流程:

 



对一台运行中的斯特林模型进行扫描,使用Geomagic Design X进行逆向工程操作。


将数据上传到CAD软件进行处理和设计更改。


将原始CAD数据(边界表示模型)导入到3DXpert。


进行打印可行性分析,使用3DXpert进行打印准备工作。


使用一台塑料3D打印机进行CAD模型原型打印,确保其标称和组件功能都是精准的,且很好地体现了3D打印概念。


使用3DXpert对CAD模型进行设计和优化,以便进行3D金属打印:- 进行打印可行性分析 - 添加要在后期处理过程中移除的材料(机加工偏置) - 设置最佳的零部件打印方向 - 使用网格结构减少材料使用量,增加美学效果 - 设置支撑结构,消除变形 - 为零部件添加标签 - 设置打印参数 - 将多个零部件在托盘进行排版布局 - 发送到打印机。


使用位于宾夕法尼亚州立大学CIMP-3D实验室的ProX DMP 320打印机,采用钛金属(Ti6Al4V)和不锈钢(316L)材料打印优化后的模型。


进行所需的后期处理操作,完成每个增材制造部件的制作。


组装斯特林发动机部件。


用Geomagic Control X 检测部件确保其满足所需的设计目的。


运行发动机,检查运行结果,将增材制造模型与原始模型进行对比。














 






项目成果






 






 

该项目让学生清楚了解到增材制造设计工作(DfAM)的重要性,并学会如何在打印之前设计和优化模型。在设计阶段,学生能感受到加入增材制造后带来的变化,也能体会到不同的设计对后期处理的影响。


所有团队都达到了该课程的通过标准,使用的零部件数量降低,大幅减少了发动机的体积和重量,且极大地提高了发动机零部件的稳固性。

 

尽管学生时间有效无法对项目进行进一步优化,且后期处理经验很少甚至近乎于无,但他们还是能够取得了很好的表现,新模型相较原始模型重量更轻,使用的零部件更少,且装配步骤也少。我们的团队将所用零部件数量降低了45.8%,重量减少了43.3%。第二个团队将零部件数量减少了21.8%,但重量减少了71.6%。

 

对学生而言,在真实场景中重新设计增材制造零部件是一个很棒的学习体验。体验了整个增材制造工作流程后,学生能够了解到增材制造软件中不同功能的重要性。

 

“学生们深深地被3DXpert和Geomagic 软件的新功能迷住了,因为它融合了所有逆向工程、3D打印设计、优化和制造以及三位检测的功能。” 

—— Guha Manogharan,宾夕法尼亚州立大学机械工程助理教授。

 

他进一步补充道,学生们尤为关注软件的下述功能:- 能够通过逆向工程快速扫描到复杂几何图形并生成点云数据模型。- 能够自由使用基础版CAD格式(例如STEP或IGES),直接应用网格到模型上,这是一个很大的优势。最重要的是,他们还可自行进行某些更改工作,无需从头开始建模。- 能够建立支撑结构并对其进行控制,取得想要的结果,例如将后期处理需求最小化,减少关键面的支撑需求。

 

随着大家对增材制造专业知识的需求越来越多,参加该硕士项目的学生人数也不断增加,宾夕法尼亚州立大学将继续在其课程中使用3DXpert,Geogmagic Control X 和 Geomagic Design X 软件。

 



  关于 3DXpert(DfAM) 





 

在一个软件环境内完成增材制造设计和工艺设置。


通过先进的端到端增材制造设计 (DfAM)  最大限度地提高效率和创新,并为工业零件设计和增材制造建立数据处理能力。


借助 3DXpert,设计师在有充分的设计自由度的情况下设计满足增材制造生产的功能性结构。

 







 关于 Geomagic Control X  





 

作为专业计量软件,Geomagic Control X 基于3D扫描技术,更快速、更全面、随时随地捕获并测量数据,对零件进行3D扫描和检测的速度比使用三坐标测量仪快 7 倍,且用户根据节省的时间和人力报告检测成本降低多达 80%。

 







  关于 Geomagic Design X  





 





利用逆向工程软件(结合了基于历史的 CAD 与 3D 扫描数据处理)对实物部件进行逆向工程,将其转化为数字参数 CAD 模型,以实现最优结果!



 

源文摘自:Oqton



美国宾夕法尼亚州立大学:使用Geomagic Design X,Control X 和 3DXpert 辅助增材制造教学

【概要描述】 宾夕法尼亚州立大学 Geomagic 合作,通过动手实践增加学生从设计到后期处理的增材制造经验。

美国宾夕法尼亚州立大学教学需求



宾夕法尼亚州立大学是从事增材制造研究和教育的高等院校之一,提供很有特色的增材制造与设计工程硕士(MEng AMD)项目。该项目的特色之一是它不仅招收全日制学生,还招收在职工程师,后者用过宾夕法尼亚州立大学世界校区(网络虚拟校区)在线完成学习。



为帮助学生成为技术专家将其所学的增材制造知识用于实践,该项目将多学科理论知识与亲身实践相结合,学生们可在宾夕法尼亚州立大学增材制造车间获得实践经验。

 

所有学生都必须接受实验室课程,学习从设计到后期处理的整个增材制造工作流程,获得相关经验,而且参加该项目的大多数学生都在为行业领先的打算进军增材制造领域的企业工作。




“为实验室课程选择合适的教学道具真的挺难的,” Timothy W. Simpson教授说道,他是增材制造与设计硕士项目主任兼创新金属加工-直接数字化沉积中心(CIMP-3D)的联合主任。“一方面,我们希望学生能够体验到他们将来工作会用到的最专业的软件工具,获得良好的实际动手经验。另一方面,这些软件工具必须非常容易学习和使用,因为学生在学校呆的时间很有限,” Simpson 补充道。

“我们发现3DXpert教学版、Geomagic Design X 和Geomagic Control X 软件是相当合适的教学软件,它能够教会学生如何通过三维扫描创建模型,准备和优化用于打印的3D CAD模型,并检测成品质量,课程老师和学生都对他们的功能和易用性印象深刻。”

 






 






增材制造实践:从概念到工作模型






 






 

我们的实验室课程项目之一是打印一个用金属制成的斯特林发动机,采用增材制造提高现有的功能装配模拟真实世界的发动机功能。由于时间限制,学生们扫描了一些运行中的斯特林发动机模型,使用Geomagic Design X 逆向工程软件技术作为其学习起点而非从头开始。然后创建一个参数化的、基于特征的、可编辑的实体模型,并将其导入到CAD系统中。

 

通过的标准是观察学生是否能够获得一个能够正常运行的模型,其转速RPM(每分钟速率)等参数能够比得上原始模型甚至更为优越,同时还要整合增材制造的优势,比如零部件更为牢固,重量更轻等。学生必须使用不同速度和等级的激光来进行后期处理,对不同体积的网格结构进行金属增材制造设计和生产。

 






 






宾夕法尼亚州立大学

增材制造实验室实践课程概要






 






学生Joseph Fisher、Ryan Henderson、Adnen Mezghani、Nicholas Nace和Nate Watson完成了该项目的下述流程:

 



对一台运行中的斯特林模型进行扫描,使用Geomagic Design X进行逆向工程操作。


将数据上传到CAD软件进行处理和设计更改。


将原始CAD数据(边界表示模型)导入到3DXpert。


进行打印可行性分析,使用3DXpert进行打印准备工作。


使用一台塑料3D打印机进行CAD模型原型打印,确保其标称和组件功能都是精准的,且很好地体现了3D打印概念。


使用3DXpert对CAD模型进行设计和优化,以便进行3D金属打印:- 进行打印可行性分析 - 添加要在后期处理过程中移除的材料(机加工偏置) - 设置最佳的零部件打印方向 - 使用网格结构减少材料使用量,增加美学效果 - 设置支撑结构,消除变形 - 为零部件添加标签 - 设置打印参数 - 将多个零部件在托盘进行排版布局 - 发送到打印机。


使用位于宾夕法尼亚州立大学CIMP-3D实验室的ProX DMP 320打印机,采用钛金属(Ti6Al4V)和不锈钢(316L)材料打印优化后的模型。


进行所需的后期处理操作,完成每个增材制造部件的制作。


组装斯特林发动机部件。


用Geomagic Control X 检测部件确保其满足所需的设计目的。


运行发动机,检查运行结果,将增材制造模型与原始模型进行对比。














 






项目成果






 






 

该项目让学生清楚了解到增材制造设计工作(DfAM)的重要性,并学会如何在打印之前设计和优化模型。在设计阶段,学生能感受到加入增材制造后带来的变化,也能体会到不同的设计对后期处理的影响。


所有团队都达到了该课程的通过标准,使用的零部件数量降低,大幅减少了发动机的体积和重量,且极大地提高了发动机零部件的稳固性。

 

尽管学生时间有效无法对项目进行进一步优化,且后期处理经验很少甚至近乎于无,但他们还是能够取得了很好的表现,新模型相较原始模型重量更轻,使用的零部件更少,且装配步骤也少。我们的团队将所用零部件数量降低了45.8%,重量减少了43.3%。第二个团队将零部件数量减少了21.8%,但重量减少了71.6%。

 

对学生而言,在真实场景中重新设计增材制造零部件是一个很棒的学习体验。体验了整个增材制造工作流程后,学生能够了解到增材制造软件中不同功能的重要性。

 

“学生们深深地被3DXpert和Geomagic 软件的新功能迷住了,因为它融合了所有逆向工程、3D打印设计、优化和制造以及三位检测的功能。” 

—— Guha Manogharan,宾夕法尼亚州立大学机械工程助理教授。

 

他进一步补充道,学生们尤为关注软件的下述功能:- 能够通过逆向工程快速扫描到复杂几何图形并生成点云数据模型。- 能够自由使用基础版CAD格式(例如STEP或IGES),直接应用网格到模型上,这是一个很大的优势。最重要的是,他们还可自行进行某些更改工作,无需从头开始建模。- 能够建立支撑结构并对其进行控制,取得想要的结果,例如将后期处理需求最小化,减少关键面的支撑需求。

 

随着大家对增材制造专业知识的需求越来越多,参加该硕士项目的学生人数也不断增加,宾夕法尼亚州立大学将继续在其课程中使用3DXpert,Geogmagic Control X 和 Geomagic Design X 软件。

 



  关于 3DXpert(DfAM) 





 

在一个软件环境内完成增材制造设计和工艺设置。


通过先进的端到端增材制造设计 (DfAM)  最大限度地提高效率和创新,并为工业零件设计和增材制造建立数据处理能力。


借助 3DXpert,设计师在有充分的设计自由度的情况下设计满足增材制造生产的功能性结构。

 







 关于 Geomagic Control X  





 

作为专业计量软件,Geomagic Control X 基于3D扫描技术,更快速、更全面、随时随地捕获并测量数据,对零件进行3D扫描和检测的速度比使用三坐标测量仪快 7 倍,且用户根据节省的时间和人力报告检测成本降低多达 80%。

 







  关于 Geomagic Design X  





 





利用逆向工程软件(结合了基于历史的 CAD 与 3D 扫描数据处理)对实物部件进行逆向工程,将其转化为数字参数 CAD 模型,以实现最优结果!



 

源文摘自:Oqton



  • 分类: 产业应用
  • 发布时间:2023-06-15 11:15
  • 访问量:
详情

宾夕法尼亚州立大学 Geomagic 合作,通过动手实践增加学生从设计到后期处理的增材制造经验。

 

宾夕法尼亚州立大学教学需求

宾夕法尼亚州立大学是从事增材制造研究和教育的高等院校之一,提供很有特色的增材制造与设计工程硕士(MEng AMD)项目。该项目的特色之一是它不仅招收全日制学生,还招收在职工程师,后者用过宾夕法尼亚州立大学世界校区(网络虚拟校区)在线完成学习。

为帮助学生成为技术专家将其所学的增材制造知识用于实践,该项目将多学科理论知识与亲身实践相结合,学生们可在宾夕法尼亚州立大学增材制造车间获得实践经验。

 

所有学生都必须接受实验室课程,学习从设计到后期处理的整个增材制造工作流程,获得相关经验,而且参加该项目的大多数学生都在为行业领先的打算进军增材制造领域的企业工作。

“为实验室课程选择合适的教学道具真的挺难的,” Timothy W. Simpson教授说道,他是增材制造与设计硕士项目主任兼创新金属加工-直接数字化沉积中心(CIMP-3D)的联合主任。“一方面,我们希望学生能够体验到他们将来工作会用到的最专业的软件工具,获得良好的实际动手经验。另一方面,这些软件工具必须非常容易学习和使用,因为学生在学校呆的时间很有限,” Simpson 补充道。

“我们发现3DXpert教学版、Geomagic Design X 和Geomagic Control X 软件是相当合适的教学软件,它能够教会学生如何通过三维扫描创建模型,准备和优化用于打印的3D CAD模型,并检测成品质量,课程老师和学生都对他们的功能和易用性印象深刻。”

 

增材制造实践:从概念到工作模型

 

我们的实验室课程项目之一是打印一个用金属制成的斯特林发动机,采用增材制造提高现有的功能装配模拟真实世界的发动机功能。由于时间限制,学生们扫描了一些运行中的斯特林发动机模型,使用Geomagic Design X 逆向工程软件技术作为其学习起点而非从头开始。然后创建一个参数化的、基于特征的、可编辑的实体模型,并将其导入到CAD系统中。

 

通过的标准是观察学生是否能够获得一个能够正常运行的模型,其转速RPM(每分钟速率)等参数能够比得上原始模型甚至更为优越,同时还要整合增材制造的优势,比如零部件更为牢固,重量更轻等。学生必须使用不同速度和等级的激光来进行后期处理,对不同体积的网格结构进行金属增材制造设计和生产。

 

宾夕法尼亚州立大学

增材制造实验室实践课程概要

 

学生Joseph Fisher、Ryan Henderson、Adnen Mezghani、Nicholas Nace和Nate Watson完成了该项目的下述流程:

1、对一台运行中的斯特林模型进行扫描,使用Geomagic Design X进行逆向工程操作。

2、将数据上传到CAD软件进行处理和设计更改。

3、将原始CAD数据(边界表示模型)导入到3DXpert。

4、进行打印可行性分析,使用3DXpert进行打印准备工作。

5、使用一台塑料3D打印机进行CAD模型原型打印,确保其标称和组件功能都是精准的,且很好地体现了3D打印概念。

6、使用3DXpert对CAD模型进行设计和优化,以便进行3D金属打印:- 进行打印可行性分析 - 添加要在后期处理过程中移除的材料(机加工偏置) - 设置最佳的零部件打印方向 - 使用网格结构减少材料使用量,增加美学效果 - 设置支撑结构,消除变形 - 为零部件添加标签 - 设置打印参数 - 将多个零部件在托盘进行排版布局 - 发送到打印机。

7、使用位于宾夕法尼亚州立大学CIMP-3D实验室的ProX DMP 320打印机,采用钛金属(Ti6Al4V)和不锈钢(316L)材料打印优化后的模型。

8、进行所需的后期处理操作,完成每个增材制造部件的制作。

9、组装斯特林发动机部件。

10、用Geomagic Control X 检测部件确保其满足所需的设计目的。

11、运行发动机,检查运行结果,将增材制造模型与原始模型进行对比。

 

 

项目成果

 

该项目让学生清楚了解到增材制造设计工作(DfAM)的重要性,并学会如何在打印之前设计和优化模型。在设计阶段,学生能感受到加入增材制造后带来的变化,也能体会到不同的设计对后期处理的影响。


所有团队都达到了该课程的通过标准,使用的零部件数量降低,大幅减少了发动机的体积和重量,且极大地提高了发动机零部件的稳固性。

 

尽管学生时间有效无法对项目进行进一步优化,且后期处理经验很少甚至近乎于无,但他们还是能够取得了很好的表现,新模型相较原始模型重量更轻,使用的零部件更少,且装配步骤也少。我们的团队将所用零部件数量降低了45.8%,重量减少了43.3%。第二个团队将零部件数量减少了21.8%,但重量减少了71.6%。

 

对学生而言,在真实场景中重新设计增材制造零部件是一个很棒的学习体验。体验了整个增材制造工作流程后,学生能够了解到增材制造软件中不同功能的重要性。

 

“学生们深深地被3DXpert和Geomagic 软件的新功能迷住了,因为它融合了所有逆向工程、3D打印设计、优化和制造以及三位检测的功能。” 

—— Guha Manogharan,宾夕法尼亚州立大学机械工程助理教授。

 

他进一步补充道,学生们尤为关注软件的下述功能:- 能够通过逆向工程快速扫描到复杂几何图形并生成点云数据模型。- 能够自由使用基础版CAD格式(例如STEP或IGES),直接应用网格到模型上,这是一个很大的优势。最重要的是,他们还可自行进行某些更改工作,无需从头开始建模。- 能够建立支撑结构并对其进行控制,取得想要的结果,例如将后期处理需求最小化,减少关键面的支撑需求。

 

随着大家对增材制造专业知识的需求越来越多,参加该硕士项目的学生人数也不断增加,宾夕法尼亚州立大学将继续在其课程中使用3DXpert,Geogmagic Control X 和 Geomagic Design X 软件。

 

关于 3DXpert(DfAM) 

在一个软件环境内完成增材制造设计和工艺设置。


通过先进的端到端增材制造设计 (DfAM)  最大限度地提高效率和创新,并为工业零件设计和增材制造建立数据处理能力。


借助 3DXpert,设计师在有充分的设计自由度的情况下设计满足增材制造生产的功能性结构。

关于 Geomagic Control X  

作为专业计量软件,Geomagic Control X 基于3D扫描技术,更快速、更全面、随时随地捕获并测量数据,对零件进行3D扫描和检测的速度比使用三坐标测量仪快 7 倍,且用户根据节省的时间和人力报告检测成本降低多达 80%。

 

关于 Geomagic Design X

  

利用逆向工程软件(结合了基于历史的 CAD 与 3D 扫描数据处理)对实物部件进行逆向工程,将其转化为数字参数 CAD 模型,以实现最优结果!

源文摘自:Oqton

关键词:

扫二维码用手机看

暂时没有内容信息显示
请先在网站后台添加数据记录。

最新消息

留言应用名称:
订阅电子报
描述:

ZEISS 三维扫描仪  |  3D打印  普立得科技

 

普立得科技成立于2004年,专注于工业级3D打印机与三维扫描,同时我们也是ZEISS GOM代理商,并提供3D打印及扫描的代工整合服务,特此加值整合相关软体,包含拓扑优化设计 、医疗影像分析、逆向工程 、3D检测等,期望推进积层制造的使用习惯为生产带来更多价值。

深圳市福田区车公庙泰然四路天安创新科技广场大厦一期B座1208C (518040)

关注我们
pic
pic
pic
pic
pic
pic
pic
pic
pic
pic
这是描述信息

微信公众号

这是描述信息

视频号

这是描述信息

哔哩哔哩

您有什么疑问,或想咨询我们的产品与服务,请留下信息,我们会及时与您联系!

留言应用名称:
客户留言
描述:

网站地图  |   隐私权   |   隐私权政策    Seo

© 2021 普立得科技有限公司 All Rights Reserved 粤ICP备19059200号